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BACKGROUND 
 
Precision nitrogen (N) management (PNM) aims to match N fertilizer supply with crop N demand 
in both space and time, and thus has great potential to improve N use efficiency (NUE), increase 
farmer profitability, and reduce N losses and negative environmental impacts. However, current 
adoption rate of PNM is still low in Minnesota corn production, and most farmers apply all N 
fertilizer before planting. This may be due to the knowledge background of the growers, high cost 
and complexity of current PNM technologies, lack of technology support, and the weaknesses and 
limitations of some of the available PNM technologies, etc. To overcome some of these barriers, 
this project aims to develop distinct levels of PNM strategies and technologies to facilitate the 
adoption of PNM by Minnesota corn producers.   
       
For producers who are more risk-averse, calibration strip-based PNM strategies can be used to 
guide field-specific uniform or site-specific variable rate N applications without previous database 
establishment. Crop growth models can be calibrated, validated and used to determine optimum N 
rates of corn for different soil types and regions of Minnesota based on long-term simulations 
using historical data. It can also be used to guide in-season N management decisions based on 
current season and historical weather data. For more risk-tolerant producers, innovative new 
sensing technologies including leaf chlorophyll fluorescence sensor - Dualex Scientific+, light 
handheld multispectral canopy sensor – RapidSCAN CS-45, the integrated multi-parameter 
canopy sensor - Crop Circle Phenom UAV and satellite remote sensing can be used for early and 
more accurate detection of corn N stress, and differentiation of N vs. other abiotic stresses like 
water. More advanced integrated PNM strategies will be developed based on current and new 
sensing technologies, crop growth modeling and their combinations. 
          
 
PROJECT OBJECTIVES 

1)  Develop and evaluate calibration strip‐based PNM strategies for corn;  
2)  Develop and evaluate crop growth model‐based PNM strategies for corn;  
3)  Evaluate new proximal and UAV remote sensing systems for early and better diagnosis  

            of corn nitrogen (N) status and develop crop sensing‐based PNM algorithms and 
strategies;  

4)  Develop and evaluate integrated PNM strategies for corn by combining crop modeling 
     and remote sensing technologies;  

      5)  Explore management zone-based (MZ) PNM technology 
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6)  Conduct on‐farm experiments to evaluate distinct PNM strategies for the potential  
            benefits in terms of corn yield, NUE, profitability and N losses.  
 

KEY PROGRESSES 

1. Developing a remote sensing and calibration strip-based in-season nitrogen management 
strategy for corn 
 

Abstract 
The objective of this research was to develop and evaluate a remote sensing and calibration strip-
based in-season corn (Zea Mays L.) nitrogen (N) recommendation strategy guided by unmanned 
aerial vehicle (UAV), aerial or satellite remote sensing platforms. Three commercial farm fields 
in Minnesota, USA were selected to evaluate the proposed in-season N recommendation technique 
at the corn growth stage of around V8. The results indicated that 60-90% of the block-specific 
optimum N rates (ONRs) based on any two different platforms were within 10 kg ha-1 of each 
other using the recommendation method. Overall, the calibration strip method successfully 
increased N use efficiency (NUE) at all three sites, while maintaining yields comparable to 
applying farmer N rates at two of the three site-years.  
 

Introduction 
 
In-season site-specific corn (Zea Mays L.) nitrogen (N) recommendations are very challenging 
because they are directly influenced by spatial and temporal patterns of crop N demand and soil N 
supply, which can significantly fluctuate within and between fields (Scharf et al., 2001; Cao et al., 
2017). Successful recommendation strategies must adjust for seasonal N cycling from 
mineralization, previous crop fixation, and additions of inorganic N from manure or synthetic 
fertilizers while also considering the fluctuating crop demand of N throughout their vegetative and 
reproductive growth cycles (Robertson & Vitousek, 2009). Consequently, timing N availability to 
occur when corn N demand is highest through delaying a majority of fertilization until growth 
stages V8-V9 has been promoted because it provides for dynamic control of N inputs based on 
seasonal weather (Feinerman et al., 1990).  
 
The ramp calibration strip (RCS) strategy was proposed to be a practical N management approach 
(Raun et al, 2008). With the implementation of calibration strips, seasonal and spatial N dynamics 
can be examined at each individual crop stage to estimate in-season optimum N rates (ONRs) 
within the field. RCS-based N recommendation can estimate the N needs and avoid the 
requirement to determine each N cycle component individually (i.e. mineralization, leaching, 
denitrification). However, further research questioned the reliability of this strategy using 1 or 2 
sets of RCSs to guide in-season N application across a large field, due to significant within-field 
variability (Roberts et al., 2011). The objectives of this study were to 1.) develop a calibration 
strip-based precision N management strategy that can determine site-specific ONRs for corn 
around V8 growth stage using remote sensing; and 2.) evaluate unmanned aerial vehicle (UAV), 
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aerial, and satellite sensing platforms for making in-season N recommendations based on 
calibration strips.  
  
Materials and Methods 
 
Site description 
Three trials were conducted in commercial farm fields in Minnesota, USA. All fields were rain-
fed and were in a corn-soybean (Glycine max L.) rotation. Field 1 (F1) trial was conducted during 
2019 and was located in western Minnesota in a field with 0-2% slope and soil textures primarily 
composed of Flom-Aazdahl-Hamerly complex and Bearden silt loam. Field 2 (F2) trial was also 
located in western Minnesota and conducted during 2020 in a field characterized by heterogenous 
soil textures comprised of Croke very fine sandy loam, Doran-Mustinka silty clay loam, and Fargo 
silty clay loam. F2 possessed moderate topographic variation due to several drainage paths cutting 
through the field. Field 3 (F3) trial was conducted in eastern Minnesota during 2020 and the soil 
textures in the field mainly consisted of a combination of Lester loam, Angus loam, and Glencoe 
clay loam with 0-10% slope.  
 
Experimental design 
Calibration strip trials with five repeating field length N rates were implemented in each field at 
pre-plant. Nitrogen treatments were applied based on farmer N rate (FNR) and consisted of 
treatments of 0%, 35%, 70%, 100%, and 130% FNR. Each field trial was fertilized using granular 
urea (46-0-0, N-P-K) broadcast directly before planting and incorporated to eight centimeters 
depth using tillage. Due to the addition of N from other fertilizers broadcast together with urea at 
pre-plant, such as monoammonium phosphate (11-52-0, N-P-K) and ammonium sulfate (21-0-0-
24, N-P-K-S), no field trial was successfully implemented with 0 kg-N ha-1 treatments and each 
was closer to 10-20 kg ha-1 N starter fertilizer. Unlike previous calibration strip testing that used 
one or two strips per field, the whole field area was divided into calibration strips for this study. 
Field trials were closely observed at around V8 growth stage to estimate in-season site-specific 
ONR using remote sensing technology. To summarize fertilizer applications and flight operations, 
the field was divided into a virtual reference grid. The virtual grids were approximately 49 m long 
and 24 m or 18 m wide to match in-season N applicator width. Five adjacent grids that represented 
the range of pre-plant N treatments were combined to form calibration response blocks to estimate 
in-season site-specific ONR. To evaluate the effectiveness of RCS’s and the yield potential of 
applying very low annual N, four calibration blocks were selected in each field as check areas that 
received the normal five pre-plant rates, however, would not receive in-season N. These four 
blocks were selected due to soil texture composition, topography, and seed germination. 
 
Remote sensing measurements 
Three remote sensing platforms were used to monitor the field trials around V8 growth stage, 
including AeroVironment Quantix Mapper UAV (AeroVironment Inc. Semi Valley, CA, USA), 
Ceres Imaging airplane (Ceres Imaging, Oakland, CA, USA), and Planet Labs PlanetScope 
satellite (Planet Labs, San Francisco, CA, USA) remote sensing systems. All three systems image 
multispectral bands that are corrected to relative surface reflectance and subsequently used to 
calculate normalized difference vegetation index (NDVI). The main difference between the three 
platforms is spatial resolution, which ranged between 0.05 m for the Quantix Mapper up to 3 m 
for PlanetScope satellite imagery (Table 1). To prepare the data for comparison analysis, QGIS 
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(QGIS Development Team, 2020) was used to clip the imagery to the area of interest and calculate 
NDVI for each image scene. 
 

Table 1. Comparison of UAV, airplane, and satellite imagery system resolutions.  
                                      UAV Airplane Cube Satellite 

                                   Quantix Mapper UAV Ceres Aerial Imagery PlanetScope 
Spectral Resolution 4 bands 

Blue (458 nm) 
Green (569 nm) 
Red (619 nm) 
NIR (840 nm) 

4 bands 
Green (550 nm) 
Red (670 nm) 

Red-Edge (717 nm) 
NIR (800 nm) 

 

4 bands 
Blue (455 - 515 nm) 
Green (500 - 590nm) 
Red (590 - 670 nm) 
NIR (780-760 nm) 

Spatial Resolution 0.05 m 0.8 m 3 m 
Temporal Resolution As Necessary As Necessary Daily 

 
 
Field management and in-season N recommendations 
Starting with pre-plant urea fertilizer treatments, in-field operations were summarized per virtual 
grid using as-applied files provided by the grower or co-op applicator to correctly estimate the 
amount of fertilizer product applied. For each remote sensing platform, NDVI was calculated using 
red and near-infrared spectral bands and zonal statistics in QGIS were used to calculate the mean 
grid NDVI value. Imagery was clipped to remove unrepresentative regions such as weed 
infestations and unplanted drainage areas. 
Response curve modeling was undertaken in Python (version 3.7) using JupyterLab (Kluyver et 
al., 2016) modules. Response curve fitting was undertaken using the pandas (McKinney, 2010) 
and Matplotlib (Hunter, 2007) libraries. The strategy to prescribe in-season N application involved 
selecting the highest performing pre-plant N rate +/- 30% of the FNR. If the 0 FNR pre-plant rate 
showed no NDVI difference or outperformed the higher N rates, the 70% FNR was selected as the 
ONR. In the case that two or more N rates possess the same mean NDVI value, the lowest rate 
with similar NDVI was selected as the ONR. 
 
Timing of imagery and in-season application 
Due to weather and machinery constraints, in-season management and imagery collection timing 
varied between fields. In the case of F1, the focal time for imaging and side-dress application was 
between July 11-17, 2019 (Table 2). Due to clouds obscuring field visibility at F2 in early July, 
PlanetScope imagery was only available for five days prior to the target imagery date. Conversely, 
images for F3 were focused earlier around June 16, 2020.  
 

 
 
 
 
 
 
 

 
 

Table 2. Flight dates for different remote sensing platforms targeted at V8 corn growth 
stage in each field. Ceres Imaging image was not collected for F3.  
                                                                  Remote Sensing Platforms 
Field PlanetScope Ceres Imaging Quantix Mapper 
F1  7/17/2019 7/11/2019 7/16/2019 
F2  6/27/2020 7/02/2020 7/02/2020 
F3  6/17/2020 --- 6/16/2020 
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Results 
 
Estimation of optimal nitrogen rate using NDVI and yield responses 
The calibration strip-based N recommendation strategy assumes that corn yield response to N rates 
can be estimated using early season NDVI responses . Using the four check blocks implemented 
in each field experiment, in-season NDVI responses were compared to final grain yield responses. 
F1 displayed a close relationship between in-season NDVI and yield responses to N (Figure 1a), 
with approximately 100 kg ha-1 maximizing grain yield. Unfortunately, several of the check blocks 
were accidentally applied with in-season N at F2; however, one of the check strips remained 
untreated which showed a similar yield trend to the early season NDVI response (Figure 1b). 
Though the NDVI response to N appeared to plateau after 100 kg ha-1 of applied N, the yield 
continued to increase slightly from 150 to 220 kg ha-1. F3 exhibited the greatest difference in 
relative trends between in-season NDVI and yield (Figure 1 c,d). In-season response curves 
predicted a limited response to N with low rates possessing equal or greater NDVI values 
compared to 100% FNR or the 130% FNR (Figure 1 c,d). However, the need for N was not 
reflected in the early season data for F3 since the N rates optimizing yield were higher than those 
projected based on NDVI responses (Figure 1 c,d). This was likely due to dry conditions early in 
the season that resulted in minimal N losses, which were followed by near optimal late season 
weather conditions that enabled the crop to take up all available N. 
 
Comparison of different remote sensing platforms for N recommendation 
Over the three site years, the remote sensing platforms performed comparably in estimating ONRs 
at V8 growth stage using the NDVI response curve method (Table 3). At F1, the PlanetScope and 
Quantix platform-based methods recommended similar ONRs with 90% of ONRs within 10 kg 
ha-1 difference. However, the Ceres Imaging prescriptions at F1 were not as correlated to either 
PlanetScope or Quantix predictions. This could be explained by difference in imagery collection 
dates, July 11 versus July 16/17. Conversely at F2, the comparison of ONRs using the three remote 
sensing platforms indicated that 56-74% of blocks had less than 10 kg ha-1 difference in ONR 
recommendation between any two platforms. Evaluating the mean absolute difference (MAD) in 
recommended rate at F2 showed a moderate difference between platforms, ranging from 18 to 29 
kg ha-1. Ceres Imaging data was not collected at F3 in 2020, but the comparison of PlanetScope 
and Quantix Mapper recommendations showed a strong relationship with 90% of grids within 10 
kg ha-1 recommendation and a mean absolute difference of around 9 kg ha-1 per grid. Overall, these 
trends suggested that timing of imagery was likely a much greater factor in N rate prediction 
instead of spatial resolution of the remote sensing platforms.  
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Figure 1. Comparison of corn yield and in-season normalized difference vegetation index 
(NDVI) responses based on PlanetScope satellite imagery collected prior to side-dress 
application at F1 (a), F2 (b), and F3 (c,d)  

 

Table 3. Comparison of different Quantix Mapper, Ceres Imaging, and PlanetScope remote sensing 
platforms for optimal N rate (ONR) recommendations in different fields in terms of agreement (percentage 
of blocks having similar ONRs within 10 kg ha-1 difference) and mean absolute difference (MAD). 
Field PlanetScope/Quantix 

Agreement         MAD 
    (%)              (kg ha-1) 

Quantix / Ceres 
Agreement   MAD 

       (%)       (kg ha-1) 

Ceres/PlanetScope    
Agreement     MAD 
     (%)          (kg ha-1) 

F1  90 8.7         57 29.3      67 20.6 
F2  68       22.4         56 28.9      74 18.5 
F3  90 8.7         -- --      -- -- 

 
Nitrogen use efficiency evaluation 
Partial factor productivity (PFP) was calculated as the ratio of harvest grain and applied fertilizer 
using harvest data and the annual N rate to examine nitrogen use efficiency (NUE). Yield data was 
cleaned of outlier data using a cut-off of three standard deviations from the mean and adjusted to 
15.5% grain moisture content. Average statistics were calculated from each field site using blocks 
that followed the suggested calibration strip-based method. This standardized format allowed the 
direct comparison between calibration strip blocks to determine the optimal rate. The PFP of F1 
was higher (47-62 kg yield kg-1 N) for calibration strip-based split-application grids while the 
solely pre-plant grids achieved considerably lower PFP (33-39 kg yield kg-1 N). Corn yield was 
not significantly different between these two N management strategies in this field (5.9 Mg ha-1 
vs. 6.6 Mg ha-1) (Figure 2 a,b).  

(a) 

 

(b) 

 
(c) 

 

(d) 
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The PFP for F2 grids ranged between 61-84 kg yield kg-1 N, with the greatest NUE achieved by 
calibration strip-based in-season N application compared to all pre-plant N application treatments 
(Figure 2 c). There was not a statistical difference in PFP between in-season N management and 
100% FNR areas. Corn yield at in-season N management grids was approximately 0.2 to 0.6 Mg 
ha-1 lower compared to 100% FNR grids (Figure 2 d). The highest average yield was attained by 
the 130% FNR treatment, which on average was 0.3 Mg ha-1 greater than 100% FNR treatment.  
Across the fields, F3 attained the highest overall PFP (65-124 kg yield kg-1 N) and yield (13.6-15.3 
Mg ha-1) (Figure 2 e). The PFP of in-season N application grids were on average 40 to 60 kg yield 
kg-1 N higher than solely pre-plant applied grids (Figure 2 e). Average yield was greatest for 100% 
and 130% FNR treatments (15 Mg ha-1). However, only the in-season N management based on 
0% FNR preplant N application treatment was statistically different from the other four N rates 
(Figure 2 f). 
 
Discussion 
 
Selecting an optimal N fertilizer rate has long been a challenge in corn production, which depends 
on farmer risk tolerance and constantly changing spatial variability in soil N supply versus 
temporal N demand from plants (Feinerman et al., 1990). This has led to many instances of over-
application of N fertilizer, which has broad implications for farmer economic wellbeing, 
environmental sustainability, and human health (Keeler, et al, 2016). The results of this study 
demonstrated that in-season variable rate N applications could be guided using site-specific 
calibration strips and remote sensing at around V8 growth stage. F3 was very responsive to N 
fertilizers and achieved the highest corn yield among the three fields, due to very good weather 
conditions in 2020. Under such situations, the calibration strip-based N recommendation strategy 
could under-recommend N fertilizers. Early season weather conditions need to be incorporated 
into the decision-making process for future improvement. The three remote sensing platforms in 
general performed similarly, and the differences in ONR recommendations were mainly due to the 
difference in timing of remote sensing image collection, rather than difference in spatial resolution. 
The PlanetScope satellite remote sensing system has daily revisit time and 3 m spatial resolution, 
which makes it the most practical for large scale applications. However, either UAV or aerial 
remote sensing can be used for determining site-specific optimal N rates based on the calibration 
strip-based recommendation strategy, if the Planetscope images are unavailable or there is high 
cloud coverage. More studies are needed to further improve this in-season N management strategy 
by incorporating early season weather conditions and soil-landscape variables as well as site-
specific in-season projected yield goals.  
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Conclusion 
 
In-season N recommendation for corn production is often fraught with uncertainty over how much 
N is needed by the growing crop for the rest of the growing season. This study demonstrated that 
in-season variable rate N applications could be guided using replicated calibration strips and 
remote sensing images collected around V8 growth stage. Overall, the difference between ONRs 
prescribed by each of the platforms was within 10 kg ha-1 for approximately 60-90% of grids. The 
results indicated that this site-specific N recommendation strategy in general could increase NUE 
at all five field-years, while resulting in comparable yield at two of the three fields. Future research 

(a)  (b)  
 
 
 
 
 
 
 
 
(c)  

 
 
 
 
 
 
 
 
(d)  

 
 
 
 
 
 
 
 
(e) 

 
 
 
 
 
 
 
 
(f)  

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

 
Figure 2. Mean partial factor productivity (PFP) and corn yield for treatments receiving 
0%, 35%, and 70% farmer N rate (FNR) preplant N application and calibration strip-based 
variable rate side-dress N application compared with treatments of 100% FNR and 130% 
FNR preplant N application in F1 (a,b), F2 (c,d), and F3 (e,f). Standard deviation and 
statistical significance (p<0.05) are shown by error bars and different letters above the bars. 
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is needed to investigate how to incorporate soil landscape attributes and early season weather 
information to further improve this calibration strip-based in-season N recommendation strategy. 
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2. Evaluating model-based strategies for in-season nitrogen management of maize using 
weather data fusion 

Summary: One challenge in precision nitrogen (N) management is the uncertainty in future 
weather conditions at the time of decision-making. Crop growth models require a full season of 
weather data to run yield simulation, and the unknown weather data may be forecasted or 
substituted by historical data. The objectives of this study were to (1) develop a model-based in-
season N recommendation strategy for maize (Zea mays L.) using weather data fusion; and (2) 
evaluate this strategy in comparison with farmers’ N rate and regional optimal N rate in 
Northeast China. The CERES-Maize model was calibrated using data collected from field 
experiments conducted in 2015 and 2016, and validated using data from 2017. At two N decision 
dates - planting stage and V8 stage, the calibrated CERES-Maize model was used to predict 
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grain yield and plant N uptake by fusing current and historical weather data. Using this approach, 
the model simulated grain yield and plant N uptake well (R2 = 0.85-0.89). Then in-season 
economic optimal N rate (EONR) was determined according to responses of simulated marginal 
return (based on predicted grain yield) to N rate at planting and V8 stages. About 83% of 
predicted EONR fell within 20% of measured values. Applying the model-based in-season 
EONR had the potential to increase marginal return by 120-183 $ ha-1 and 0-83 $ ha-1 and N use 
efficiency by 8-71% and 1-38% without affecting grain yield than applying farmers’ N rate and 
regional optimal N rate, respectively. It is concluded that the CERES-Maize model is a valuable 
tool for simulating yield responses to N under different planting densities, soil types and weather 
conditions. The model-based in-season N recommendation strategy with weather data fusion can 
improve maize N use efficiency compared with current farmer practice and regional optimal 
management practice. 

 

Table 4 
The relationships between model simulated and measured maize leaf area index (LAI), 
aboveground biomass (AGB), grain yield (GY) and plant N uptake (PNU) based on results 
of calibration in 2015-2016 and evaluation in 2017 for black and aeolian sandy soils (“*” 
indicated P ≤ 0.05). 
  Calibration  Evaluation  
  Black soil Aeolian sandy soil Black soil Aeolian sandy soil 
LAI R2 0.65* 0.80* 0.86* 0.82* 
 RMSE 0.87 0.57 0.49 0.39 
 RE 28% 25% 20% 20% 
AGB R2 0.95* 0.89* 0.92* 0.88* 
 RMSE 736.66 709.44 945.78 755.73 
 RE 15% 21% 22% 23% 
GY R2 0.89* 0.82* 0.94* 0.92* 
 RMSE 730.46 647.54 626.66 533.42 
 RE 8% 11% 8% 8% 
PNU R2 0.96* 0.84* 0.93* 0.92* 
 RMSE 11.40 21.41 18.62 15.48 
 RE 6% 16% 12% 12% 
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Fig. 3. Flow chart of the procedure to determine economic optimal N rate (basal N rate at 
planting stage and side-dress N rate at V8 stage) using crop growth model and weather data 
fusion. (Note: V8 - the eight-leaf stage; R6 - the maturity stage) 

 
 

Table 5 
The difference in N application rate, grain yield (GY), marginal return (MR), partial factor productivity (PFP), 
agronomic efficiency (AE), recovery N efficiency (RE) and N surplus (NS) among five different N management 
strategies across three years (2015-2017) in black soil and aeolian sandy soil fields. 
Soil type Management N rate 

(kg ha-1) 
GY 

(t ha-1) 
MR 

($ ha-1) 
PFP 

(kg ha-1) 
AE 

(kg ha-1) 
RE 

(100%) 
NS 

(kg ha-1) 
Black soil CK 0±0 6.00±2.03 1427±507    -71±22 

FNR 300±0 12.14±1.16 2693±288 40±4 20±9 62±9 44±8 
RONR 240±0 12.75±0.61 2894±152 53±3 28±10 66±11 11±19 

EONR-A 230±18 12.76±0.69 2906±180 56±6 29±11 67±11 4±28 
EONR-H 199±0 12.47±0.78 2861±195 63±4 33±12 71±11 -13±18 
EONR-I 215±9 12.59±0.78 2877±189 59±1 31±11 69±10 -5±14 

Aeolian 
sandy soil 

CK 0±0 3.54±0.98 828±246    -57±34 
FNR 300±0 8.01±1.19 1660±298 27±4 15±7 46±2 105±50 

RONR 240±0 7.90±1.48 1697±369 33±6 18±10 49±21 66±21 
EONR-A 159±9 8.41±1.21 1899±293 53±5 30±12 60±18 6±11 
EONR-H 177±0 7.99±1.19 1776±296 45±7 25±12 50±26 32±13 
EONR-I 175±9 8.00±1.19 1780±288 46±5 25±11 50±26 30±8 

Note: FNR - farmers’ N rate, RONR - regional optimal N rate, EONR-A - actual economic optimal N rate from 
field trials, EONR-H – simulated historical long-term average economic optimal N rate modeled by 30 years of 
weather data, EONR-I – simulated in-season economic optimal N rate modeled by weather data fusion. The number 
behind “±” is standard deviation calculated from three years’ observations. 
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3. Corn Nitrogen Status Diagnosis with an Innovative Multi-Parameter Crop Circle Phenom 
Sensing System 
 
Summary: Accurate and non-destructive in-season crop nitrogen (N) status diagnosis is important 
for the success of precision N management (PNM). Several active canopy sensors (ACS) with two 
or three spectral wavebands have been used for this purpose. The Crop Circle Phenom sensor is a 
new integrated multi-parameter proximal ACS system for in-field plant phenomics with the 
capability to measure reflectance, structural, and climatic attributes. The objective of this study 
was to evaluate this multi-parameter Crop Circle Phenom sensing system for in-season diagnosis 
of corn (Zea mays L.) N status across different soil drainage and tillage systems under variable N 
supply conditions. The four plant metrics used to approximate in-season N status consist of 
aboveground biomass (AGB), plant N concentration (PNC), plant N uptake (PNU), and N nutrition 
index (NNI). A field experiment was conducted in Wells, Minnesota during the 2018 and the 2019 
growing seasons with a split-split plot design replicated four times with soil drainage (drained and 
undrained) as main block, tillage (conventional, no-till, and strip-till) as split plot, and pre-plant N 
(PPN) rate (0 to 225 in 45 kg ha−1 increment) as the split-split plot. Crop Circle Phenom 
measurements alongside destructive whole plant samples were collected at V8 +/−1 growth stage. 
Proximal sensor metrics were used to construct regression models to estimate N status indicators 
using simple regression (SR) and eXtreme Gradient Boosting (XGB) models. The sensor derived 
indices tested included normalized difference vegetation index (NDVI), normalized difference red 
edge (NDRE), estimated canopy chlorophyll content (eCCC), estimated leaf area index (eLAI), 
ratio vegetation index (RVI), canopy chlorophyll content index (CCCI), fractional 
photosynthetically active radiation (fPAR), and canopy and air temperature difference (ΔTemp). 
Management practices such as drainage, tillage, and PPN rate were also included to determine the 
potential improvement in corn N status diagnosis. Three of the four replicated drained and 
undrained blocks were randomly selected as training data, and the remaining drained and 
undrained blocks were used as testing data. The results indicated that SR modeling using NDVI 
would be sufficient for estimating AGB compared to more complex machine learning methods. 
Conversely, PNC, PNU, and NNI all benefitted from XGB modeling based on multiple inputs. 
Among different approaches of XGB modeling, combining management information and Crop 
Circle Phenom measurements together increased model performance for predicting each of the 
four plant N metrics compared with solely using sensing data. The PPN rate was the most 
important management metric for all models compared to drainage and tillage information. 
Combining Crop Circle Phenom sensor parameters and management information is a promising 
strategy for in-season diagnosis of corn N status. More studies are needed to further evaluate this 
new integrated sensing system under diverse on-farm conditions and to test other machine learning 
models. 
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Figure 4. Wells research site experimental design with four replicates of block resolution drainage treatments and 
sub-plot tillage and sub-sub plot pre-plant N treatments. Green plots signify pre-plant N treatments while purple 
plots are timing treatments outside the realm of this study. NT, ST, and CT stand for no-till, strip-tillage, and 
conventional-tillage, respectively. The numbers for the pre-plant N treatment plots indicate the N rates (kg ha−1). 

 

(a) 

 
(b) 

 

Figure 5. Crop Circle Phenom sensor (a) custom assembly with extendable pole and (b) close up view of 
ACS-430 and DAS43X sensor components. 
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Table 6. Corn N status diagnosis accuracy based on NNI prediction using SR and XGB regression results. Model 
precision was assessed using areal agreement (%) and kappa statistics (NNI<0.95 = deficient, 0.95<NNI<1.05 = 
optimum, NNI>1.05 surplus). 

 
Areal Agreement (%) 

kappa 
Statistics Deficient 

(n = 37) 
Optimum 

(n = 4) 
Surplus 
(n = 26) 

Overall 
(n = 67) 

NDRE 70 25 23 49 0.22 

CCCI 62 50 42 54 0.26 

XGB NDVI+NDRE 70 0 50 58 0.31 

XGB All Phenom Metrics 68 25 46 57 0.29 

XGB Phenom + 
Management 68 50 81 72 0.54 

 
 
Implications for On-Farm Applications 
 
Proximal sensing systems are beneficial for on-farm use because they require minimal training to 
collect data and fewer processing resources than aerial or satellite imagery. The Crop Circle 
Phenom sensor system is designed to be mounted on a vehicle or tractor, which makes it more 
difficult to be carried by hand for small plot research. To deploy it in small plot experiments, a 
custom pole was constructed to mount the two sensors and the GeoScout data logger. Another 
difference compared to similar proximal sensors is the Phenom requires an external 12 volt battery 
to power its active sensor light for calculating reflectance. Although the Crop Circle Phenom 
requires modifications for small plot research, adapting the sensor system for commercial field 
applications would be much easier because the mounting hardware and the electrical wiring were 
designed for use on a field implement. This ease of use for commercial applications is also due to 
its GPS connectivity and ability to quickly swap out the sensor across a range of field implements 
from sprayers to fertilizer spreaders, which enables whole field resolution readings to be collected 
throughout the growing season. 
 
Another way in which the Crop Circle Phenom can set itself apart as a proximal sensing system is 
through its multi-parameter spectral, environmental, and physiological metrics. Utilizing 
biophysical relationships between spectral features and temperature, the Crop Circle Phenom can 
be used to estimate ∆Temp and fPAR. Although utilized in this study to investigate N status, these 
metrics have the potential to differentiate various stress factors such as water status and 
pathological issues. However, both these management considerations were outside the scope of 
this research and should be investigated in the future. 
 
The PPN information was an important factor to use with crop sensor data for in-season N status 
prediction and diagnosis. Such data can be easily obtained from as-applied maps and should be 
included in in-season N status diagnosis, especially when variable rate PPN is applied. 
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4. Corn Nitrogen Nutrition Index Prediction Improved by Integrating Genetic, 
Environmental, and Management Factors with Active Canopy Sensing Using Machine 
Learning 
 
Abstract: Accurate nitrogen (N) diagnosis early in the growing season across diverse soil, 
weather, and management conditions is challenging. Strategies using multi-source data are 
hypothesized to perform significantly better than approaches using crop sensing information alone. 
The objective of this study was to evaluate, across diverse environments, the potential for 
integrating genetic (e.g., comparative relative maturity and growing degree units to key 
developmental growth stages), environmental (e.g., soil and weather), and management (e.g., 
seeding rate, irrigation, previous crop, and preplant N rate) information with active canopy sensor 
data for improved corn N nutrition index (NNI) prediction using machine learning methods. 
Thirteen site-year corn (Zea mays L.) N rate experiments involving eight N treatments conducted 
in four US Midwest states in 2015 and 2016 were used for this study. A proximal RapidSCAN 
CS-45 active canopy sensor was used to collect corn canopy reflectance data around the V9 
developmental growth stage. The utility of vegetation indices and ancillary data for predicting corn 
aboveground biomass, plant N concentration, plant N uptake, and NNI was evaluated using 
singular variable regression and machine learning methods. The results indicated that when the 
genetic, environmental, and management data were used together with the active canopy sensor 
data, corn N status indicators could be more reliably predicted either using support vector 
regression (R2 = 0.74–0.90 for prediction) or random forest regression models (R2 = 0.84–0.93 for 
prediction), as compared with using the best-performing single vegetation index or using a 
normalized difference vegetation index (NDVI) and normalized difference red edge (NDRE) 
together (R2 < 0.30). The N diagnostic accuracy based on the NNI was 87% using the data fusion 
approach with random forest regression (kappa statistic = 0.75), which was better than the result 
of a support vector regression model using the same inputs. The NDRE index was consistently 
ranked as the most important variable for predicting all the four corn N status indicators, followed 
by the preplant N rate. It is concluded that incorporating genetic, environmental, and management 
information with canopy sensing data can significantly improve in-season corn N status prediction 
and diagnosis across diverse soil and weather conditions. 
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Figure 6. Illustration of the integration of genetics, environmental (soil and weather) and 
management variables with active canopy sensor data using machine learning models for in-season 
nitrogen nutrition index prediction and corn N status diagnosis.  
 
5. Develop and evaluate a remote sensing and machine learning model-based (RS-ML) PNM 
technology 
 

The RS-ML PNM technology is a combination of remote sensing data and machine learning 
algorithms to develop a NDVI prediction model using field specific characteristics. Initially, 12 
different data sets were included (yield trend, yield stability, elevation, slope, aspect, curvature, 
topographic wetness index (TWI), clay content, organic matter, cation exchange capacity (CEC), 
pH, brightness index (BI)) in the NDVI prediction model. All data layers were converted to a 3 m 
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grid to match with PlanetScope-derived NDVI spatial resolution. Data from the entire field was 
used for model development.  

Based on the analysis we performed, the random forest model performed the best, and was 
selected, average grid NDVI was predicted by inputting different simulated total N rates from 0 to 
300 in 20 lb increments while all other features remained the same. A curve was fitted to plot 
predicted NDVI and simulated total N rate and optimal N rate was selected based on response 
curve in similar manner to calibration strip approach. Prescribed sidedress N rate was defined as 
the difference between optimal N rate and total N rate that had been already applied to each grid. 
The determination of random forest-based optimal N rates for a grid is illustrated in Fig. 7.  

 
Figure 7. Illustration of determination of optimal N rates for each grid based on the random forest 
machine learning model. 
 
6. Identification of Key variables influencing yield spatial trend and temporal stability 
 

Yield variability in a field is driven by more than one factor. In addition to crop response to varying 
nitrogen rates, there are field intrinsic soil and landscape characteristics that limit yield potential 
in different areas of a field. In light of the results observed, machine learning algorithms were used 
to identify key factors affecting yield spatial trend and yield temporal stability for field B. To 
identify features that were relevant for the models, Boruta algorithm was used for feature selection 
(Figure 8). The algorithm uses a random forest classifier to set a mean threshold value that will 
serve as a reference to classify feature importance. Features that show importance value higher 
than the Shadow mean are deemed important, and their importance increases with higher values. 
Once all features initially used were deemed important for the model, different models were tested 
by excluding features that were highly correlated to each other. Data was divided into training, 
validation and test (70, 20 and 10%, respectively). Three ML algorithms were tested (support 
vector machine (SVM), random forest (RF), and XGBoost). The best prediction model was 
selected based on the highest R2 and lowest error for training, validation and test sets (Table 7). 
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Although all properties were deemed important for predicting both yield spatial trend and temporal 
stability, the best performing models did not use all variables. The EC deep and the topographic 
wetness index (TWI) variables were excluded from both models due to data redundance. Curvature 
data were also excluded from the yield temporal stability prediction model. When comparing the 
machine learning algorithms used, random forest outperformed the SVM and the XGBoost for 
both prediction models. The random forest model for yield spatial trend prediction had an R2 of 
0.78, 0.79 and 0.78 and errors of 4.96, 4.99, and 4.96 for validation, training, and test sets, 
respectively. The best performing model for the yield temporal stability was random forest with 
R2 of 0.69, 0.71, and 0.72, and errors of 2.88, 2.95 and 2.91 for validation, training, and test sets, 
respectively.  

 
Table 7. Machine learning models training, validation and test results using shallow soil electrical 
conductivity (EC shallow), EC deep, curvature, organic matter, brightness index, TWI, relative 
elevation, slope and aspect data to predict yield spatial trend and temporal stability. Bold numbers 
indicate best performing model for each field. 

ML 
algorithm 

Yield spatial trend  Yield temporal stability 

Training Validation Test Training Validation Test 
R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

SVM1 0.62 6.57 0.63 6.68 0.62 6.61 0.21 4.79 0.23 4.9 0.21 0.88 
RF2 0.78 4.96 0.79 4.99 0.78 4.96 0.69 2.88 0.71 2.95 0.72 2.91 

XGBoost3 0.72 5.70 0.73 5.66 0.73 5.59 0.56 3.49 0.6 3.41 0.61 3.35 
1SVM: support vector machine. 
2RF: random forest. 
3XGBoost: extreme gradient boosting. 

(A) (B) 

Figure 8. Boruta algorithm results for yield (A) spatial trend and (B) temporal stability 
feature selection in field B. 
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The identified important variables can be further used for management zone delineation. The 
important variables can be different for different fields, so suitable variables for management zone 
delineation will be field-specific. More research is needed to identify a common set of key 
variables that can be used for management zone delineation in different regions in Minnesota.   

7. Management zone delineation and management zone-based N recommendation 

Management zones were delineated based on yield spatial trend and yield stability map, BI, slope, 
and relative elevation maps resampled to a 5 m grid resolution (Figure 9). Total N rate applied and 
NDVI from each individual MZ were plotted, and response curves were developed in similar 
manner as the calibration strips approach. The identified optimal N rates in both MZs would be 
assigned to each grid within the MZ-based treatment strips based on which MZ overlapped with 
individual grids. However, due to high NDVI variability it was not possible to identify a trend in 
the NDVI response to different N rates. A split application method was used for sidedress N 
prescription for MZ-based strips instead. Total N applied for these grids were subtracted from the 
FNR and the difference in N was prescribed.  

 

 

  

8.  On-farm evaluation of different PNM strategies 

 
Two fields from the same two farms were selected in 2021 to evaluate different PNM strategies.  
 
Tables 8 and 9 show the 2021 growing season monthly precipitation averages for both fields A 
and B located in the Maple Lake region and Traverse County, respectively, and compared to the 
20-year averages for the same regions. In field A, the months of April, May, and July were the 
driest with total rainfall at least 63% lower than normal. Although total rainfall in June was 20% 
higher than the 20-year average, the precipitation events were not well distributed, which is an 
important factor to consider for sidedress N application timing. In a period of 25 days, from mid-
May until June 10th the region received less than an inch of rain. This dry period was followed by 

Figure 9. Fields A and B management zones delineated for the 2021 growing season.  
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a rainfall event of 2.3 inches and a subsequent second dry period of 10 days. In the end of June 
another extremely dry period was observed, which extended throughout the whole month of July.  

In field B, although average season precipitation was only 6% below normal, rainfall distribution 
was irregular. Precipitation was above the normal average for the month of April followed by a 
dry period until July when sidedressing occurred. After sidedress application only the month of 
September showed lower precipitation. The unusually dry weather during the season presented a 
challenge to the sidedress N application timing. Despite UAN being less susceptible to 
volatilization than urea, the longer the fertilizer is on the soil without rain the higher the chances 
of losing N as ammonia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8. Monthly temperature averages for the 2021 growing season in Field A, MN. 

Month 20-year average 
2001-2021(in) 

Measure 
rainfall (inches) 

Rainfall departure from 
normal (%) 

April 3.0 1.09 -63.7 
May 4.2 1.22 -71.0 
June 4.0 4.81 20 
July 4.2 1.08 -74.3 
Aug 3.6 3.0 -16.7 
Sept 4.0 3.69 -7.8 
Oct 3.1 1.88 -39.4 

Total 26 16.77 Avg. -36.1 
 

Table 9. Monthly temperature averages for the 2021 growing season in Field B, MN. 

Month 20-year average 
2001-2021(in) 

Measure rainfall 
(inches) 

Rainfall departure 
from normal (%) 

April 2.27 4.24 86.8 
May 3.02 0.94 -68.9 
June 4.48 0.82 -81.7 
July 3.57 2.13 -40.3 
Aug 3.68 5.06 37.5 
Sept 3.03 2.53 -16.5 
Oct 2.65 5.57 110.2 

Total 22.7 21.3 Avg. -6.2 
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The grain yield and net return/acre of each N management strategy for field A is summarized in 
Figure 10 and Table 10. The highest grain yield (202 bu/ac) was obtained in the 100% FNR 
treatment, in which all N was applied preplant. The 35% + CS treatment had the lowest grain yield 
of 171 bu/ac, while remaining treatments had a similar yield around 189 bu/ac. Despite the 30 
bu/ac difference between the highest and lowest grain yields, the differences between treatments 
were not statistically significant. Net economic return was calculated using a partial budget 
analysis, which included only those costs that varied among treatments (N fertilizer and sideress 
N application costs) and revenue from grain yield. Nitrogen fertilizer costs were provided by the 
farmer. No statistical difference was seen between the treatments following the same trends as 
grain yield. The 100% FNR resulted in the highest net return, while the 35% FNR + CS resulted 
in the lowest. 

Table 10. Economics of nitrogen treatments Field A in 2021. 
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Although the whole field analysis did not show significant differences, it is possible to observe a 
high yield variability within each strip (Figure 3) suggesting that factors other than N application 
rates, such as soil and landscape properties are determinant for final yield. Thus, yield response to 
different N application rates will also vary across the field. The highlighted area is an example of 
a zone that has a low yield potential due to high slope. In these areas, crop production is limited 
by soil intrinsic factors and potentially have a low response to varying N rates. 

 
 
 
 
 
 
 

Figure 10. Field A 2021 plot 
yield (bu/ac) averages map and 
normalized yield trend map 
comparison. Yield data was 
cleaned before averages were 
calculated. The yield trend map 
was created based on 7 years of 
historical yield maps. 
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Table 11. Economics of nitrogen treatments in Field B in 2021. 

 
Table 11 and Figure 11 show the summarized grain yield and net return summary results for field 
B. Significant differences were observed between the 130% and the 35% + RS-ML treatments. 
The highest yield was obtained in the 130% FNR treatment. However, due to the high total N rate 
(200 lb N/ac) used to achieve this yield, the 130% FNR treatment had one of the lowest profits 
($960/ac). The 35% + RS-ML treatment had the lowest grain yield and net profit among all 
treatments. The highest net return was observed for the split application strategies applying 35% 
FNR at preplant and 65% FNR at sidedress and the 70% FNR + CS resulting in a net profit of 
$978.00 per acre.  

Overall, results from both fields indicate that major benefits from adopting a split application 
strategy are more subtle in dry seasons, since with low precipitation and low soil moisture there is 
a low risk of N loss by leaching or denitrification.  In addition to the dryer season and irregular 
rainfall, field B suffered the effects of high-intensity rainfall events. Many areas of the field were 
affected, and plants were broken down or lodged, which likely negatively impacted the yield across 
the field.  

Similar to field A, yield spatial variability within treatments was also observed in field B. The 
overall field analysis showed small differences in net return and yield among the N strategies. 
However, based on the spatial distribution of individual grid results, it is possible to identify areas 
with higher response to different N rates than others using the yield spatial trend map. To increase 
profit, different N management strategies should be used in areas that are more responsive to 
varying N rates and areas that the crop shows lower yield independently of the amount of N 
applied. 
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Limitations and Future Research 

The current analysis results are based on the assumption that the within-transect variability is 
minimal. However, one transect covered 7 grids in this study and there were obvious soil and 
landscape as well as yield potential variabilities within transects. Therefore, current results can 
contain errors and bias.  New machine learning analysis methods are being studied to include soil 
landscape variables as well as yield potential information to better evaluate the performance of 
different N management strategies and technologies, and will reported later.   

OUTREACH  

1. Farmer Meetings: We organized an annual meeting inviting all the farmers and consultants 
involved in on-farm N trials to share what we have done, what we learned and how we can help 
the farmers to improve their management in  Jan., 2020, Dec. 2020, and Jan. 2022. The Jan. 
meeting in 2020 was held in University of Minnesota (Figure 12), while the other two meetings 

Low-yielding 
area 

High-yielding 
area 

Figure 11. Field 
B 2021 plot 
yield (bu/ac) 
averages map 
and normalized 
yield trend map 
comparison. 
Yield data was 
cleaned before 
averages were 
calculated. The 
yield trend map 
was created 
based on 7 years 
of historical 
yield maps from 
2014-2020. 
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were help on-line due to the pandemic (Figure 13 and Figure 14). The farmers really enjoyed this 
meeting and would love to continue to work with us in 2020.  

 

   

Fig. 12. Project meeting involving cooperative farmers, crop consultant, researchers and 
graduate students on Jan. 7, 2020.  
 
 
 

 
 
Fig. 13. Project meeting involving cooperative farmers, crop consultant, researchers and 
graduate student on Dec. 18, 2020.  
 
 

 
 
Fig. 14. Project meeting involving cooperative farmers, crop consultant, researchers and 
graduate student on Jan. 11, 2022.  
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2.  Blog postings 

Miao, Y. (2021). On-farm precision ag research update: In-season site-specific side-dress 
nitrogen rate recommendations for corn. Minnesota Crop News.   

Miao, Y. (2020). Minnesota and Indiana corn growers needed for on-farm precision nitrogen 
management research project. Minnesota Crop News.   

3. Meeting Presentations 

Dr. Yuxin Miao, graduate student and postdocs involved in this project have presented results 
form this project at several different local, national and international meetings and conferences. 
The presentations are listed below. 

Miao, Y. Improving Decision Making in Precision Nitrogen Management using Machine 
Learning. China-US Bilateral Forum on Precision Agriculture & China (Weifang) Modern 
Agriculture Forum (Virtual). Nov. 11, 2021.  

Miao, Y. Improving Decision Making in Precision Agriculture Using Artificial Intelligence: 
Case Studies for Precision Nitrogen Management. At Cross Divisional Symposium “Artificial 
Intelligence in Soil and Environmental Sciences”, ASA, CSSA, SSSA International Annual 
Meeting. (November, 2021). Invited. 

Cummings, C., Miao, Y., Kang, S., Stueve, K. Developing a remote sensing and calibration 
strip-based in-season nitrogen management strategy for corn. 13th European Conference on 
Precision Agriculture, Budapast, Hungary (July 2021). 

Miao, Y. Proximal and Remote Sensing-based Precision Nitrogen Management. 7th Annual 
Nitrogen: Minnesota's Grand Challenge and Compelling Opportunity Conference University of 
Minnesota Extension and the Minnesota Agricultural Water Resource Center. (February 9, 
2021).  

Miao, Y. Proximal and Remote Sensing Technologies for Corn Nitrogen and Water Stress 
Detection. 2021 Becker Irrigation and Nutrient management field day University Extension. 
(August 30, 2021). 

Miao, Y. Precision Nitrogen Management for High Nitrogen Use Efficiency and Protection of 
the Environment. 47th Annual Hermiston Farm Fair Oregon State University. (December 3, 
2020).  

Miao, Y. Precision Agriculture for Food Security and Sustainable Development. MDA Non-
Point Fertilizer Section Meeting MDA. (November 19, 2020).  

Miao, Y. Development of Management Zones and the Use of Active/Passive Sensors in Crop 
and Crop Nutrient Site-specific Management. Advanced Crop Advisors Workshop North Dakota 
State University. (February 2020).  
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Cummings, C., Miao, Y., Fernandez, F. G., Paiao, G. D. Evaluating Crop Circle Phenom Active 
Canopy Sensor for Corn Nitrogen Status Diagnosis in Minnesota. Annual ASA-CSSA-SSSA 
Meeting ASA-CSSA-SSSA, San Antonio, Texas, United States. (November 12, 2019). 
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Remote Sensing 14(2), 394. 
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