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Project objectives: 

1) Identifying key factors influencing corn optimum N rates using deterministic cropping 
system models.  

2) Identifying key factors influencing corn optimum N rates using machine learning models.  
3) Management zone delineation strategies in different regions.  
4) Support on-farm trials to evaluate different variable rate N strategies and technologies.  
5) Facilitate the adoption of variable rate N technologies by developing variable rate N 

guidelines in Minnesota. 
 

General Background 

The University of Minnesota's Precision Ag Center has been trying to create improved and easy 
to use variable rate N (VRN) technologies using management zone (MZ) based dynamic crop 
models, remote sensing, and machine learning technologies. Previously completed on-farm trials 
and other ongoing trials being conducted in Minnesota's Central, Metro, Southeast, and South-
Central areas provide the data to further improve some of the VRN technologies and develop 
guidelines for VRN management of corn in various regions of Minnesota.  

On-farm Trials Data Compilation   

Previous and current on-farm trials data have been organized and structured in a way that can be 
used for the development of farm scale modeling and machine learning algorithms. The number 
of years for which the data was organized varies depending on the duration the site was under an 



experimental trial. The organized major data types include the site soil characterization, historical 
weather data, genetic characteristics of corn cultivars planted, and agronomic management 
practices.     

Objective 1: Identifying key factors influencing corn optimum N rates using deterministic 
cropping system models.  
 
Model Calibration: 

The CERES-Maize model was calibrated using the GM field, which was divided into 120 grids. 

To capture the variability in soil types within a field, some of the plots were subdivided into sub-

grids. This has increased the total number of grids(plots) with the sub-grids (plots) to 164. The 

simulation time was set over three years, 2019-2021. The years 2019 and 2020 was used for 

model warmup, and the year 2021 was used for the detailed analysis of water budget, N budget 

and yield analysis.  

The model simulated yield (calibration) and measured yield are shown in Table 1. 

Table 1. Calibrated vs measured corn yield for calibration plots 

Grid ID 
Yield 
kg/ha 

Calibrated 
Yield bu/ac 

Measured yield, 
bu/ac Soils  

Applied N Fertilizer 
kg/ha 

Grid 4 14922 220 226 400453 154 
Grid 16 13574 200 198 400486 179 
Grid 17 11449 169 167 400466 179 
Grid 85 16366 242 241 400447 179 
Grid 159 13261 196 200 400453 184 

 

The calibrated CERES-maize module of the DSSAT-CSM was used to simulate nitrogen 

management responses to corn yield for five different treatments and 120 plots at Grand Meadow 

experimental field located in Southeast Minnesota. The calibrated model simulation efficiency 

was validated against measured yield using three different statistical measures: probability of 

bias (pbias), Nash-Sutcliff equation (NSE), RMSE-observations standard deviation ratio (RSR).  



Nash-Sutcliffe efficiency (NSE): NSE is a normalized statistic that assesses how much residual variance 

(“noise”) there is in relation to the variance of measured data (Nash and Sutcliffe, 1970). NSE represents 

how well the 1:1 line fits the observed versus simulated data plot. Equation 1 illustrates how NSE is 

calculated: 

 

Equation 1 

 Where: Yi obs is the ith measurement/observation, Yi sim is the ith simulated value, Ymean is the mean of observed data, 

and n is the total number of observations. 

 Percent bias (PBIAS): PBIAS assesses the typical likelihood of the simulated data to differ from their observed 

counterparts in size or shape. Low-magnitude values of PBIAS indicate accurate model simulation, with 0.0 being the 

ideal value. PBIAS values that are positive suggest model underestimation bias, while values that are negative indicate 

model overestimation bias (Gupta et al., 1999). Equation 2 is used to determine the PBIAS: 

Equation 2 

 
 

RMSE-observations standard deviation ratio (RSR): RSR is calculated as the ratio of the RMSE and standard 

deviation of measured data, as shown in equation 3. RSR varies from the optimal value of 0, which indicates zero 

RMSE or residual variation and therefore perfect model simulation, to a large positive value. The lower 

RMSE, the lower the RSR, and the better the model simulation performance. 

 

Equation 3 

 

Simulated corn yield was validated against measured yield for a total of 32 plots under the four 

soil types (Figure 1). The average simulated corn yield for the 100% FNR treatment was 227 

bu/ac, the measured average corn yield being 225 bu/ac. The statistical comparison in between 

the measured and simulated corn yield has shown NSE of 0.83, Pbias -0.60 and RSR 0.41. This 

indicates very accurate simulation results.  

 

 

 



 

Figure 1. Simulated vs. measured corn yield of the farmer practice (100% farmer N rate).  

Simulated Nitrogen Balance  

A N balance, calculated as the difference between N inputs and N removal/outputs from the soil, 

provided an estimate of the potential N loss amounts. Soils and climate databases with detailed 

management practices were used as model inputs so as to identify drivers of N balance variation 

among the 120 plots of GM experimental site. The 35% FNR+CS treatment received the least N 

fertilizer, as seen in the table below, whereas the 130% FNR treatment received the most. The 

130% FNR and 35% FNR + Granular have the largest nitrate drainage losses and leaching losses. 

Table 2.  Simulated N balances of different N management strategies.   

N-Balance 
Components 

N-INPUT, kg/ha 
100% FNR 130% FNR 35%FNR+CS  35%FNR+Granular 70%FNR+CS 

   Fertilizer N 203.1 223.1 157.9 176.3 190.8 
   Mineralized N 69.6 64.7 66.0 65.6 62.6 
   Soil NH4 0.2 0.2 1.1 0.6 0.5 
   Soil NO3 58.5 53.5 65.7 81.0 70.3 
   Total N Input 331.4 341.5 290.8 323.5 324.4 
N-Balance 
Components 

OUTPUT, kg/ha 
100% FNR 130% FNR 35%FNR+CS  35%FNR+Granular 70%FNR+CS 

   N immobilized 3.4 4.2 3.7 3.9 3.4 
   N leached 7.2 9.2 6.2 8.3 7.1 
   N loss to tile 
drainage 35.6 41.1 15.1 42.8 32.6 
   N Uptake from Soil 266.8 275.7 251.4 254.3 262.1 
   N2 loss 2.8 0.8 3.1 2.4 2.3 
   N2O loss 0.4 0.3 0.2 0.2 0.3 
   NH3 loss 2.2 0.6 1.5 1.1 1.0 
   NO loss 0.1 0.1 0.1 0.1 0.1 
   Soil NH4 0.2 0.2 0.2 0.2 0.2 
   Soil NO3 12.6 9.3 9.2 10.1 15.3 
   Total N Removal 331.4 341.5 290.8 323.5 324.4 



Simulated Economic Optimum N Rates 

The GM field was divided into 24 transects involving different N management strategies laying 

on four different soil types (Figure 2-4). The model simulation process involved the evaluation 

of corn yield response to varying N rates using different N management strategies in a tile 

drained high organic matter mollisol (Figure 2). The analysis focused on the influence of soil 

type on economic optimum N rate (EONR). 

 

Figure 2. Transects delineated in the Grand Meadow study field. 

 
Figure 3. Different nitrogen management strategies involved in this field study in 2021. 

130%FNR: 1320% of farmer’s N rate all applied before planting. 100%FNR: 100%FNR all 



applied before planting. 70%FNR+CS and 35%FNR+CS: 70%FNR and 35%FNR were applied 

before planting, and variable rate sidedress N application using calibration-strip based 

recommendation.   35%FNR+Granular: 35%FNR were applied before planting, and variable rate 

sidedress N application using service offered by Granular based on modeling. 

 
Figure 4. Four different soil types in this study field.  

 

The N application rate at 100% FNR was 190 kg/ha or 170 lb/ac. This includes fall application of 

24kg N/ha (21.4 lb N/ac) from monoammonium phosphate (MAP) and 6.5 kg/ha (5.8 lb/ac) from 

urea ammonium nitrate solution (UAN). To analyze the EONR, the corn yield response was 

simulated for pre-plant nitrogen application rates of Urea fertilizer at a rate of 0 kg/ha up to 

260kg/ha (0-232 lb/ac) using 2021’s weather data (Figure  5). 

 

The results indicated that the EONRs ranged from 143 lb/ac to 161 lb/ac for different soil types 

and were lower than the farmer’s N rate of 170 lb/ac. Soil type had a moderate influence on the 

EONR in this field in 2021, with a difference of 18 lb/ac among different soil types.    

 



More analyses are being performed to determine the influence of sidedress timing and different 

weather conditions and the results will be reported in next report.   

 
Figure 5. Simulated economic optimum nitrogen rate (EONR) for preplant application ranged 

from 160 kg/ha to 180 kg/ha (143-161 lb/ac) for different soil types, with the field average 

RONR being 160 kg/ha (143 lb/ac). 



Objective 2. Identifying key factors influencing corn optimum N rates using machine 
learning models.  
 
The objective of this study is to use machine learning models to identify key soil and landscape 
properties affecting yield spatial patterns and yield temporal stability for management zone 
delineation and to evaluate the consistence of these factors in different prediction models. 
 
The study was carried out in a 44 ha corn-soybean rotation field in western Minnesota, USA. Yield 
maps from 7 years collected from 2014 to 2020 were used to create yield spatial trend (YST; 
average normalized yield map) and yield temporal stability maps (YTS; coefficient of variation 
map). In the complete dataset, 29 different soil and landscape properties were used as input in the 
machine learning models including relative elevation, slope, curvature and aspect, calculated from 
LiDAR elevation data at 1 m resolution downloaded from the MN TOPO website; topographic 
wetness index and soil brightness index calculated from PlanetScope images at 3 m spatial 
resolution; soil physical properties, and macro and micronutrients collected with SoilOptix, a high-
resolution soil mapping system; and shallow and deep electrical conductivity. A farmer-friendly 
dataset was also tested using mostly variables that are available online and that can be easily 
accessed by farmers. All maps were interpolated to a 3 m grid using kriging. 
 
Prediction models for YST and YTS were created using random forest, support vector machine 
and XGBoost algorithms. To identify features that were relevant for the models, Boruta algorithm 
was used for feature selection. Once features were selected based on importance, Spearman 
correlation was used to exclude features that were highly correlated to each other to avoid 
redundance. Results showed that while all features were deemed important, relative elevation was 
the most relevant factor influencing both YST and YTS. In the farmer-friendly dataset, soil 
brightness index was the most important feature for YST, and relative elevation was the most 
important for YTS (Table 3, Figure 7 and 8). Other attributes such as slope, iron, sulfur, potassium 
and calcium soil concentrations and soil organic matter were also among the most important 
factors for both YST and YTS. Random forest  was the best performing model among all models 
and test dataset for both response variables. 
 



 
Fig. 6. Location and boundary of rainfed corn-soybean rotation field used for the study. The field 
has an area of 44 ha and is located in the Traverse County, MN, USA. 
 
Table 3. Complete list of variables used in the yield temporal trend (YTS) and yield spatial trend 
( YST) prediction models. Bold variables represent the variables included in the farmer-friendly 
dataset.   

 

The identification of key attributes that affect yield spatial and temporal variability in a field can 
greatly contribute to the delineation of representative management zones for site-specific 
application. Results showed that different soil and landscape attributes had varying roles in 
predicting crop yield, and that field data easily available could be used to predict crop yield and 
delineate management zones. Despite the promising results more research is required to test the 
relevance of different attributes across multiple fields and conditions. The next steps for this 
research will be to delineate management zones based on the prediction model results and analyze 
the yield variability within each zone. In the future, this pipeline for management zone delineation 
will be tested for nitrogen management, and potential economic and agronomic benefits will be 
analyzed. 



 
Figure 7. Boruta algorithm feature selection results for yield spatial trend (YST) prediction using the complete dataset (A), 
and the farmer-friendly dataset (B). 

 

 
Figure 8. Boruta algorithm feature selection results for yield temporal stability (YTS) prediction using the complete dataset 
(A), and the farmer-friendly dataset (B). 

 

In 2022, nine on-farm N trials were conducted in Minnesota, and all the data have been compiled, 
and preliminary analyses have been done for each field. The key results are summarized here. 

1) In Minnesota, 2022 had a dry summer in most trials, and as a result, split-applications did 
not perform as all preplant application strategies under dry summer conditions. However, 
in general, the UMN precision N management strategy performed better than fixed rate 
split strategies farmers use.  

2) Compared with farmer’s N rate (FNR) and/or farmer’s N practice, the UMN PNM system 
on average used 12 lb/ac less N (from 32 lb/ac less to 3 lb/ac more N on a field average 



basis), achieved similar yield (yield difference varied from -13.2 to 18.3 bu/ac, with the 
average being 0.64 bu/ac on a field average basis). The N use efficiency (partial factor 
productivity, bu/lb N) increased an averaged 0.06 bu/lb N across all the trials, varying 
from an increase of 0.24 to a decrease of 0.19 bu/ac on a field average basis, depending 
on the field and farmer’s management practices.  

3) In general, we found that the UMN CS-RS-PNM technology determining site-specific 
sidedress N based on crop growth during the growing season resulted in higher yield and 
profits than the farmer’s normal fixed rate split application practices based on the 
farmer’s experience or suggestions from experts. However, the best performing N 
management strategy varied within a field or across fields due to the prices of fertilizer, 
corn, and field conditions (soil type, topography) and weather patterns. 

4) Nitrification inhibitor: In a field study, we tested the effects of nitrification inhibitor of 
sidedress N application. The nitrification inhibitor worked quite well when 60%FNR was 
applied before and at planting and 40%FNR was sidedressed. The addition of nitrification 
inhibitor resulted in 9 bu/ac higher yield and 51 $/ac higher profit than the same treatment 
without nitrification inhibitor. However, when 40%FNR was applied before or at planting 
with variable rate sidedress N application, the addition of nitrification inhibitor did not 
produce any benefits in profit. 

5) In general, in dry years or dry regions, the 100%FNR or 80%FNR +VRN sidedress can 
perform better than 40%FNR+VRN sidedress or 60%FNR+VRN sidedress, while in wet 
years or wet regions, 40%FNR+VRN sidedress or 60%FNR+VRN sidedress generally 
perform better than 100%FNR or 80%FNR +VRN sidedress.  

6) In an irrigation field located in Becker, the 30%FNR +VRN sidedress strategy performed 
the best, with the highest agronomic, economic and environmental benefits. 

7) No single N management technology performed the best across fields or across a field. 
Different strategies performed better in different parts of a field depending on the soil type, 
OM content, landscape positions and weather conditions (Figure 9 and Table 4 for 
example). 

8) The UMN PNM system incorporates different N management strategies involving both all-
preplant N application and split applications with variable rate sidedress N and has built in 
a mechanism of insurance, therefore, it is more stable and adaptive to different weather 
conditions than only using one strategy or technology.  

 



 

Figure 9.  Map of an optimal technology and additional profits ($) for each or transect. Soil type and slope data 
were from Web Soil Survey. Soil organic matter content (%) estimated using a geospatial model based on 2019 lab-
measured data. The best economically optimal technology was written on the left of the label within a block, while 
the number on the right side of label shows additional benefit ($) per grid produced by the optimal technology 
compared to farmer’s normal practice (i.e., 60%FNR+40%FNR Urea-NI).  

Note that the symbol + indicates the sidedress was applied after the preplant N application unless inhibitor application 
(I) followed immediately after the symbol. Also, the preplant and sidedress fertilizers were applied as prescribed with 
the accuracy of 98.9% and all the grids were considered for this map without removing any outlier grids for 
demonstration purpose, [Acronyms] CS: calibration-strip based sidedress prescription; FNR: farmer’s N rate; I: with 
nitrification inhibitor; NI: no nitrification inhibitor. 
 
Table 4. Areas within the entire field where each treatment/technology performed the best 
economically. 

 
 
More analyses will be performed based on the data collected from 2019-2022 to establish machine 
learning models to identify key variables influencing optimal N rates and will be reported in next 
report.  
 
 



Objective 3.  Management zone delineation strategies in different regions.  
This part of the results will need to wait for more results from Objective 2.  

 

Objective 4. Support on-farm trials to evaluate different variable rate N strategies and 
technologies. 

Nine on-farm trials were conducted in 2022 to evaluate variable rate N management strategies. 
Plant and soil samples were collected at harvest time and yield data have been obtained from 
farmers. We analyzed all the data and prepared a report for each field and farmer. We organized 
an 2022 On-farm Precision Agriculture Trial Summary Meeting on Jan. 20, 2023 to invite all the 
cooperative farmers and crop consultants to join this meeting by a combination of in-person and 
on-line format (Figure 6), and we shared the overall findings and implications of 2022 trials. We 
also organized one-to-one meetings to discuss the results with each farmer/consultant to help 
them understand the results and discuss 2023 plans.  

    
Figure. 4. Minnesota Annual On-farm Precision Agriculture Summary Meeting (January 20, 2023) 

 
Objective 5. Facilitate the adoption of variable rate N technologies by developing variable 
rate N guidelines in Minnesota. 
Need to wait until more results are available from previous objectives. 

 

 

 

 

 


